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TWO-FLUID HYDRODYNAMIC MODEL OF A BUBBLE FLOW

UDC 532.54B. L. Kantsyrev1 and A. A. Ashbaev2

A computational model for an unsteady one-dimensional gas–liquid flow taking into account gravity
is proposed. The model includes the Zuber–Findlay relation and solutions of the Cauchy problem
close to the solutions of drift models. It is shown that the effect of attached mass has a significant
influence on the acoustic characteristics of the system of equations.

Introduction. Computational models for analysis of unsteady two-fluid flows are formulated as systems
of differential equations of the mechanics of multiphase media [1]. There are one-fluid models with one differential
equation of motion (for example, the hydraulic model used in the RELAP5 code [2]) and two-fluid models (used in
the TRAC and CATHARE codes [3]).

An essential point in the development and further testing of one-fluid models is that empirical relations,
such as Zuber–Findlay formulas [4] and flow pattern maps containing experimental data on gas–liquid flows, can be
used as closing equations. This is important for modeling not only steady-state flows but also flows with kinematic
wave processes. In more complex two-fluid models, the equations of motion for the carrier and disperse phases are
written as two differential momentum equations. In the last case, the choice of parameters of the problem is more
difficult. The equations of motion for heterogeneous flow components have not yet been finally formulated. The
complexity of interaction between phases with different velocities complicates calculation of interphase forces, for
example, the interphase friction force due to liquid viscosity and the coefficients of terms corresponding to collective
interaction of disperse particles with the liquid flowing around them [5].

In the present paper, we study a system of equations of continuity and motion in which the coefficients
mentioned above are considered as parameters that ensure satisfaction of empirical closing relations and specify the
wave characteristics of the computational model. This system can be used to develop a two-fluid heat-hydraulic
model which includes the equations of continuity, motion, and energy balance.

Main Assumptions. Let us write hydrodynamic equations of heterogeneous media for a gas–liquid
monodisperse medium with barotropic components. Under the assumptions made, the closed system includes
two momentum equations and two continuity equations. According to [1], the momentum equations have the form
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where the subscripts 1 and 2 refer to the liquid (carrier) and phase, respectively, the z axis is directed upward, in
opposition to gravity, α2 is the volume gas content, α1 = 1 − α2, V2 and V1 are the velocities of the bubble and
liquid phases, respectively, ∂P/∂z are the forces due to the pressure gradient, Fw1 and Fw2 are the forces due to
the interaction of flows with the channel wall, ραgz is the gravity, and F12 is the interphase interaction force.

The quantity Fw2 is considered small and is neglected. The interphase interaction force is

F12 = ρ1α2

(∂V1

∂t
+ V1

∂V1

∂z
− gz

)
− ρ1α2χm

(∂V2

∂t
+ V2

∂V2

∂z
−
(∂V1

∂t
+ V1

∂V1

∂z

))
− nπa2ρ1

2
Cµ|U |U − kα

∂α2

∂z
− ku

∂U

∂z
.

1Russian Research Institute of Nuclear Plant Operation, Moscow 109507. 2Osh Technological University, Osh
714000, Kirghizstan. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 42, No. 6, pp. 64–72,
November–December, 2001. Original article submitted January 10, 2001.

0021-8944/01/4206-0979 $25.00 c© 2001 Plenum Publishing Corporation 979



Here the first term is the Archimedes force, the second term is the attached-mass force for spherical particles of
constant radius in the liquid flow, the third term is the viscous friction force, and the forth and fifth terms are
the forces due to the collective interaction between the liquid and the bubbles sliding relative to the liquid [5, 6],
and χm is the coefficient that allows for the effect of nonsingularity and nonsphericity of disperse particles on the
attached-mass force: χm = 1/2 at α2 ' 0 and χm < 1/2 at α2 > 0. If we set χm = 0, the attached-mass force is
not taken into account.

All bubbles are assumed to be of the same radius a; n is the bubble number density in the flow. The
quantities a, n, and α2 are related by n = 3α2/(4πa3). In this case, the interphase friction force becomes

F12 = α2Kµ|U |U.

Here U = V2 − V1 and Kµ = (3/8)(ρ1/a)C0
µψα, where C0

µ is the bubble resistance coefficient averaged over the
channel cross section (for the reason of dimension, we can assume C0

µ to be a function of Reynolds and Laplace
numbers, the ratio of densities ρ1/ρ2, and the ratio of the bubble size to the channel diameter a/D) and ψα(α2) is a
dimensionless coefficient [1, Vol. 2] that allows for the effect of volume gas content on the interphase friction force.

We seek the coefficients kα and ku in the form

kα = Rα(ρ1, ρ2, α2)U2n(4πa3/3) = Rαα2U
2, ku = Ru(ρ1, ρ2, α2)Un(4πa3/3) = Ruα2U,

where Rα and Ru have the dimension of density.
The form of the functions of C0

µ, ψα, Rα, and Ru is further determined by comparison of the system of
equations proposed with empirical relations.

System of Equations. In the absence of phase transitions, the continuity equations have the form
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Solving Eqs. (1) for phase accelerations, we obtain
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where ϕ1p = 1 + α2ϕp, ϕ2p = 1 − α1ϕp, ϕp = (ρ1 − ρ2)(χm/ρ2)/(1 + χmρ/ρ2), ϕ1α = ϕαρ2α2, ϕ2α = ϕαρ1α1,
ϕ1u = ϕuρ2α2, ϕ2u = ϕuρ1α1, ϕα = Rα/(ρ1ρ2(1 + χmρ/ρ2)), ϕu = Ru/(ρ1ρ2(1 + χmρ/ρ2)), and ρ = ρ1α1 + ρ2α2.

System (2), (3) is closed. The characteristic equation corresponding to this system is
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where C1,2 are the speeds of sound in the first and second phases, C∗ is determined from relations 1/ρ∗ = α1/ρ1

+ α2/ρ2 and 1/(ρ∗C2
∗) = α1/(ρ1C

2
1 ) + α2/(ρ2C

2
2 ), and V = (ρ1α1V1 + ρ2α2V2)/ρ is the weighted average velocity.

If (U/C1)2 � 1 and (U/C2)2 � 1 and terms of the corresponding and higher orders of smallness are ignored,
Eq. (4) can be solved approximately

λ1,2 = (V1Y1 + V2Y2)± C∗Kac, λ3,4 = ρp

(
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ϕ2p + ϕu

U

2

)
± UKc, (5)

where Y1 = ρpα1(ϕ1p/ρ1 +(ϕu/2)α2(ρ1−ρ2)Q/ρp), Y2 = ρpα2(ϕ2p/ρ2− (ϕu/2)α1(ρ1−ρ2)Q/ρp), Kac = (ρ∗/ρp)0.5,
Kc = ρp[−α1α2ϕ1pϕ2p/(ρ1ρ2) + α1α2ϕα/ρp + ϕ2

u/4 − Qα1α2ϕu/ρp)]0.5, 1/ρp = (α1/ρ1)ϕ1p + (α2/ρ2)ϕ2p, and
Q = (ρ1 − ρ2)ρp/(ρ1ρ2(1 + χmρ/ρ2)). The characteristics λ1,2 correspond to propagation of acoustic perturbations
in the two-phase flow, and characteristic λ3,4 correspond to propagation of convective perturbations.
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Fig. 1. Kac versus α2 for χm = 0.2 (curve 1), 0.5
(curve 2), and 0.8 (curve 3).

It follows from (5) that allowance for the effect of attached mass influences the acoustic properties of system
(2), (3). Figure 1 shows a curve of the coefficient Kac versus the volume gas content at ρ2/ρ1 = 0.05 for three
values of χm. As can be seen from Fig. 1, the attached-mass effect results in a decrease in the speed of sound
compared with the value of C∗. Stadtke et al. [7] allowed for the effect of attached mass on the speed of sound in a
water flow with bubbles of constant sizes [7] and obtained a relation for the speed of sound that coincides with the
data given in the present paper if terms of the order of smallness (U/C∗)2 and higher are ignored. Calculations of
the critical discharge of boiling water from a rectangular channel into the atmosphere [7] and comparison with the
experiment of [8] led Stadtke et al. [7] the conclusion that allowance for the attached-mass force is important for
modeling critical discharges.

To analyze the convective properties of system (2), (3) regardless of its acoustic properties, we consider
gas–liquid flow regimes in which the phase compressibility is insignificant (ρ1 = const and ρ2 = const as C1,2 →∞).
In this case, the total volume flow can be treated as a boundary condition and a specified function of time. Then,
Eqs. (2) leads to the equations of volume flow W and volume gas content α2:

∂W

∂z
= 0, W (t) = α1V1 + α2V2; (6)

∂α2

∂t
+ α1α2

∂U

∂z
+ [W + U(α1 − α2)]

∂α2

∂z
= 0. (7)

Excluding the derivative of the pressure with respect to the coordinate from Eq. (3) and allowing for the
independence of the volume flow W from the coordinate, we obtain the differential equation

∂U

∂t
+ fu

∂U

∂z
+ fα

∂α2

∂z
= f, (8)

where fu = W + U [α1 − α2 − 2Qα1α2 + QRu/(ρ1 − ρ2)], fα = U2[Rα − ρ(1 + χmρ1/ρ)]Q/(ρ1 − ρ2), f = Q[(−gz
+ dW/dt)−KµU |U |/(ρ1 − ρ2)], and Q = (ρ1 − ρ2)ρp/(ρ1ρ2(1 + χmρ/ρ2)).

The right side of Eq. (8) does not contain the force of friction against the channel wall Fw1 that acts on the
first phase, which was previously noted in [9]. If the flow is almost homogeneous and steady, the left side of Eq. (8)
is much less than every term on its right side and Fw1 because of the smallness of the derivatives ∂U/∂t, ∂U/∂z,
and ∂α2/∂z, and |dW/dt| � g.

If f = 0, then

|gz|(ρ1 − ρ2) = KµU |U |, (9)

i.e., U = U(α2). Substituting U = U(α2) into Eq. (7), we obtain the equation of the drift model:

∂α2

∂t
+ Vα

∂α2

∂z
= 0. (10)

Here Vα = W + d(U(α2)α1α2)/dα2.
To obtain a convenient form of the empirical relation that provides for additional information on the coeffi-

cients C0
µ, ψα, Rα, and Ru, we consider the establishment of a gas–liquid countercurrent flow in a vertical channel.

We assume that the upper part of the vertical channel is connected with a large container filled with a liquid and
its lower part is connected with a similar container filled with a gas. Obviously, moving down, the liquid flow is
limited by the ascending gas countercurrent flow. In this case, the total volume flow in the channel will be equal
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Fig. 2 Fig. 3

Fig. 2. Volume gas content α2 versus the coordinate z/L0 for t/(L0/U) = 0 (curve 1), 3
(curve 2), and 20 (curve 3).

Fig. 3. (Vα −W )/U versus α2 for ρ2/ρ1 = 1 (curve 1), 0.2 (curve 2), 0.05 (curve 3), and
0.001 (curve 4).

to zero. (This example is not an abstract one. Indeed, at the final stage of a hypothetical failure of a coolant
in a water-cooled reactor, water boiling can result in rapid growth in vapor content, and, consequently, unstable
“hanging” of a layer of underheated water on a vapor “cushion” can give rise to a countercurrent flow corresponding
to the present model.) Calculations of countercurrent flow for the drift flow model [10] use the drift flow relation

W21 = U0α2α
N
1 , (11)

where N = 0–2 and U0 is the floating velocity of a single bubble in an unbounded liquid volume. At the same time,
by the definition of the drift flow,

W21 = W2 − α2W. (12)

Simultaneous solution of Eqs. (11) and (12) yields the steady-state value of α2 for the specified reduced gas flow
rate W2 and volume flow W . In this case, W = 0. Let N = 1, which corresponds to U = V2 − V1 = U0. Then,
for small values of W2, the joint solution of (11) and (12) with respect to α2 is a solution of a quadratic equation
whose one root is larger than 0.5 and the other is smaller than 0.5. To solve this problem uniquely, we need some
additional information. Let us consider the solution of (10) simultaneously with the condition U = U0 = const.

Figure 2 shows distributions of the volume gas content in the channel obtained from the solution of (10) for
various times [L0 = a(8/3)(ρ/ρ1)/(C0

µψα) is the characteristic scale of change in α2 at the initial moment]. At the
initial moment, the volume gas content in the channel corresponds to curve 1. It can be seen that the gas content
profile flattens gradually with time, and a steady-state flow with uniform distributions of velocities and gas content
is established. The establishment process occurs in accordance with the wave properties (10). Indeed, for values
of α2 approaching zero (upper part of the channel), Vα > 0 and for values of α2 approaching unity (lower part of
the channel), Vα < 0 (Vα = 0 for α2 = α∗2 = 0.5). Curve 1 in Fig. 3 corresponds to the dependence of (Vα−W )/U0

on α2 at U = const.
As follows from Figs. 2 and 3, the upward transfer of convective perturbations corresponds to α2 < α∗2 and

the downward transfer corresponds to α2 > α∗2. As a result, a flow with the parameters

α2 = α∗2, Vα = 0 (13)

is established. Using the condition U = U0 = const and relation (13) for volume rates of the steady-state descending
and ascending flows (W1 = V1α1 and W2 = V2α2), we obtain the relation

W
1/2
1 +W

1/2
2 = U

1/2
0 , (14)

which corresponds to the flow choking regime at U = const. The structure of relation (14) coincides with the
structure of the well-known Wallis relation [10] for countercurrent flow “choking.” At W = 0, there is a unique
value α2 = 0.5. In this example, it is impossible to obtain a unique solution of the problem of countercurrent flow
establishment using only the specified boundary conditions and equations of conservation of mass and momentum
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balance in stationary form. Indeed, from Eq. (13) and the condition dVα/dα2 < 0, we obtain the condition of
flow choking in the channel relative to convective perturbations that arrive at the channel from its boundaries
and find that the steady-state solution is independent of the boundary conditions (if α2 > α∗2 in the lower part
of the channel and α2 < α∗2 in the upper part). In the indicated approach, described in [11], the countercurrent
flow choking regime can be regarded as a kinematic analog of the critical outflow and the corresponding empirical
relations can be treated as data on the convective characteristics of the system of equations for two-velocity flows
(similarly, data on the critical mass flows are used to specify acoustic characteristics). Therefore, it is appropriate
to use the Wallis formula [10] for the choking regime as a closing relation:

W 0.5
1 + (ρ2/ρ1)0.25W 0.5

2 = C0.5. (15)

Here C0.5 = Cf (gD(ρ1 − ρ2)/ρ1)0.25 and, according to [10], Cf can be considered a function of the dimensionless
number Nf = Re(ρ1 − ρ2)/ρ1, where Re = [(gD)0.5Dρ1]/µ1 is the Reynolds number.

From (13) and (15), we obtain the relation for sliding

U = C/(α1 + (ρ2/ρ1)0.5α2). (16)

Relation (16) corresponds to the Zuber–Findlay equation [4] for phase sliding, which is a generalization of experi-
mental data for flows in vertical channels:

V2 = C0W + Vw. (17)

From (17) and the equality W = α1V1 + α2V2 it follows that U = ((C0 − 1)W + Vw)/α1 if C0 = 1 and Vw =
C/(1 + (ρ2/ρ1)0.5α2/α1).

An analysis of the experimental data of [10, 12–14] shows that linear dependences of the form (17) are valid
over a wide range of countercurrent flow parameters. Hence, relation (15), obtained in [10] for annular flow, can be
used in determining parameters of the present hydrodynamic model. Relation (15) is used to analyze experimental
data on “choking” in channels where water is supplied through porous inserts (see [10]) to minimize the effect of
boundary conditions. This suggests that relation (15) is determined only by flow parameters in the channel and
not at its edges, and, hence, can be used to determine parameters of the one-dimensional model. From comparison
of (16) with (9), it follows that C0

µ = (8/3)a/[DCf (Re, ρ2/ρ1)] and ψα = (α1 + (ρ2/ρ1)0.5α2)2.
Within the framework of the model proposed, to ensure satisfaction of the flow choking conditions relative

to convective perturbations that come to the channel from its boundaries when the countercurrent flow choking
regime is established, we require that the characteristic equation of system (6)–(8) have degenerate roots whose
values are equal to Vα in Eq. (10). This condition is satisfied if

Rα = ρ(1 + χmρ1/ρ)− α1α2(ρ1 − ρ2)δ2
α/Q, Ru = 2α1α2(ρ1 − ρ2)(1 + δα/Q), (18)

where δα = (1− (ρ2/ρ1)0.5)/ψ0.5
α .

Thus, the parameters of the hydrodynamic model are defined. To compare the relations obtained for Rα
and Ru with the results of [6], we write the equation following from (18) for the interphase force acting on a particle
in the liquid flow providing that ρ2/ρ1 � 1 and α2 � 1 and ignoring the friction force:

F12 = 4.3πa3ρ1

{∂V1

∂t
+ V1

∂V1

∂z
− gz −

1
2

[∂V2

∂t
+ V2

∂V2

∂z
−
(∂V1

∂t
+ V1

∂V1

∂z

)]
−K1U

2 ∂α2

∂z
−K2α2U

∂U

∂z

}
.

In the present paper, K1 = 1.5 and K2 = 3. In [6], K1 = 0.6 and K2 = 0.9. The difference in the values of K1

and K2 is explained by the fact that Kroshilin and Kroshilin [6] calculated the interphase force assuming that the
distribution of disperse particles in the flow was chaotic, while in the present paper, we used empirical data obtained
for real flows. We note that the value of K1 should not be less than 1.5 in order for the characteristic equation
of system (2)–(3) to have only real roots. If (18) is satisfied, system (6)–(8) has the characteristics λ1 = Vα and
λ2 = Vα. Substituting (18) into system (2)–(3), we can show that the convective characteristics of system (2), (3) are
also degenerate and equal to Vα. Since the systems of equations considered above have degenerate characteristics,
the correctness of the formulation of the Cauchy problem requires an additional analysis. Because the stability
of solutions of the Cauchy problem for system (2), (3) is rather difficult to estimate, we estimate the stability
for the simpler system (6)–(8), which follows from (2) and (3) at ρ1 = const and ρ2 = const. Let us consider the
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Fig. 4. α2 versus z/L0 for t/(L0/U) = 0 (curve 1), 3
(curve 2), and 20 (curve 3).

development of weak perturbations of a homogeneous steady state that is a homogeneous steady-state solution of two
equations of motion [1, Vol. 1]. After linearization of Eqs. (6)–(8) with respect to this homogeneous state, we seek
the condition of existence of a nontrivial solution having the form of a traveling wave: U = U0 + U ′ exp (iωt− ikz)
and α2 = α20 + α′2 exp (iωt − ikz). This condition is satisfied if the determinant of the linearized system of
equations vanishes [with allowance for the linearized right side (8)]. Reducing the determinant to zero, we have
iω1 = iVαk +Q∂(f/Q)/∂U and ω2 = Vαk, where ∂(f/Q)/∂U < 0.

Thus, there are two solutions of the dispersion equation. One solution corresponds to a damping wave and
the other is a neutral-stable solution, as in the drift equation. It is important that the phase wave velocities are equal
to Vα, i.e., the choking condition for the steady-state countercurrent flow is satisfied for convective perturbations
of all frequencies. In other words, all small perturbations of the phase sliding and gas content U ′ and α′2 will be
carried out of the channel to its boundaries. This leads to establishment of a channel countercurrent flow with
the parameters corresponding to (15). The result obtained shows that the formulation of the Cauchy problem for
system (6)–(8) is correct.

Calculation Results. To illustrate the kinematic characteristics of the hydrodynamic model described by
Eqs. (2) and (3), we solved numerically the problem of establishment of a countercurrent flow regime in a vertical
channel within the framework of the indicated system of equations. Numerical integration was performed by the
method of characteristics. We first determined the relations for converting the variables into the next time layer
for the nondegenerate system of equations. Next, passing to the limit, we obtain degeneration of the convective
characteristic). The calculation domain is similar to that described above. Obviously, for the adopted geometry of
the calculation domain, the total volume flow is zero. This regime was chosen because with zero volume flow, the
steady-state value of the volume gas content for the drift model depends only on the parameter ρ2/ρ1, defined in
(15) and, hence, one does not need to model the flow circuit in which the specified volume flow is maintained. It
follows from Fig. 3 that the regime with W = 0 corresponds to steady-state values α2 > 0.5. The value ρ2/ρ1 = 0.2
chosen in the calculations corresponds to a steady-state regime with α∗2 = 0.6.

Figure 4 shows distributions of the volume gas content in the channel for various times. It can be seen
that the establishment process leads to a steady-state regime with a steady-state value of α∗2 equal to 0.6. Thus,
the convective wave characteristics of this model correspond to the empirical relation (15). Choking of kinematic
perturbations at the upper and lower boundaries of the vertical channel implies that the calculation result does not
depend on the volume gas content in the upper and lower containers if the gas content in the upper container is less
than α∗2 and in the lower container, it is larger than α∗2. Thus, the calculations of the establishment process using
the bubble flow model is correct even if the gas content in the lower container is close to unity.

Conclusions. A two-fluid hydrodynamic model for a disperse flow was proposed. The choice of parameters
of this model allows for the Zuber–Findlay relation as a closing equation. The analysis performed shows that the
countercurrent flow choking regime in a vertical channel can be considered as a two-velocity flow choked relative
to external convective perturbations and the choking condition can be used to chose parameters of the problem.
Allowance for the effect of attached mass in the model of a two-fluid disperse flow with bubbles of fixed sizes results
in a decrease in the estimated speed of sound [coefficient (ρ∗/ρp)0.5 is always smaller than unity], which is important
for calculations of critical outflows.
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